سافت گذر دانشنامه نرم افزار - دانلود رایگان نرم افزار

همه دسته بندی ها

منو
جستجو
اطلاعیه های مهم سایت اطلاعیه های مهم سایت
💐 میلاد زینت پدر حضرت زینب سلام الله علیها مبارک باد 💐
 
 
  1. جهت رفع مشکل باز شدن سایت به دلیل بلاک توسط  نود 32 این ویدیو یا این ویدیو(ورژن 9 به بالا) یا راهنمای تصویری را مشاهده کنید
  2. اکانت های بروزرسانی نود32 با قیمت های مناسب به صورت یک ، سه ، شش و دوازده ماهه از اینجا قابل خرید می باشد.

نرم افزار های پرکاربرد

ثبت نام | ورود
Udemy - Machine Learning A-Z™ Hands-On Python & R In Data Science

دانلود Udemy - Machine Learning A-Z™ Hands-On Python & R In Data Science - دانلود آموزش یادگیری ماشین با زبان‌های برنامه‌نویسی پایتون و آر

دانلود دورهٔ آموزش ویدئویی یادگیری ماشین براساس زبان‌های برنامه‌نویسی پایتون و R در علم داده‌ها

توضیحات بیشتر

دانـلـود کـنـیـد

www.esetupdate.ir www.esetupdate.ir
دانلود Udemy - Machine Learning A-Z™ Hands-On Python & R In Data Science مشاهده تصاویر بیشتر ...
مشاهده تصاویر بیشتر ...
تعداد مشاهده

45167مشاهده |

1408رأی |

امتیاز :2.8

مدت زمان:

44:29:00

زبان / قیمت(تومان):

رایگان برای اعضای ویژه انگلیسی / رایگان برای اعضای ویژه

فرمت / حجم فایل:

10/2 GB / mp4

آخرین بروزرسانی:

دسته بندی:

| در پلیر موجود در این صفحه، می‌توانید ویدئوی مقدمه و آشنایی با آموزش‌های این دوره را با زیرنویس انگلیسی به‌صورت آنلاین تماشا کنید |

Udemy - Machine Learning A-Z™: Hands-On Python & R In Data Science

Last Updated: 2022/2

 

توجه داشته باشید که این دورهٔ آموزشی ارائه‌شده یکی از برترین، پُرامتیازترین، پُرفروش‌ترین و تأثیرگذارترین دوره‌های کمپانی معتبر Udemy با موضوع «یادگیری ماشین با استفاده از زبان برنامه‌نویسی پایتون و R در علم داده‌ها» و سایر مهارت‌های مربوطه است در سایت Udemy تنها با پرداخت مبلغ بسیار زیادی قابل خریداری خواهد بود.

با استفاده از این دورهٔ آموزشی ویدئویی می‌توانید از صفر تا صدِ مهارت‌ها و تکنیک‌های مربوط به یادگیری ماشین براساس زبان‌های برنامه‌نویسی پایتون و R در علم داده‌ها را با جدیدترین متدها فرا بگیرید. سطح این دورهٴ آموزشی تصویری، از مقدماتی (در حد صفر) به‌سوی سطح پیشرفته است؛ یعنی شما برای استفاده از این دوره، به هیچ‌گونه دانش و مهارت قبلی در هیچ‌کدام از زمینه‌های مربوطه نیازی ندارید.

فایل‌های زیرنویس انگلیسی این دورهٔ آموزشی نیز به‌طور کامل به همراه هر ویدئو ارائه شده‌اند و نیازی به دانلود جداگانهٔ آنها نیست.

 

– تولیدکننده: کمپانی معتبر Udemy

مدرس/تیم آموزش‌دهنده: Kirill Eremenko, Hadelin de Ponteves, Ligency I Team, SuperDataScience Support, Ligency Team

– تاریخ آخرین آپدیت دوره: ۲۰۲۲/۲ (جدیدترین آپدیت/آپدیت نهایی)

– سطح: از مقدماتی تا پبشرفته

– مدت زمان آموزش: ۴۴ ساعت و ۲۹ دقیقه

– زبان آموزش: انگلیسی

– زیرنویس انگلیسی: دارد

– فرمت فایل‌های ویدئویی: MP4

– کیفیت ویدئوها: HD 720p

 

فهرست سرفصل‌ها و عناوین آموزشی به همراه زمان دقیق آنها (سرفصل‌ها و عناوین اصلی این دوره، بدون بروزرسانی):

Course Content

I 45 Sections | 320 Lectures | 44h 29m Total Length
_____________________________________________

Welcome to the course! | 43:20

Applications of Machine Learning - 03:22

BONUS: Learning Paths - 00:51

BONUS #2 ML vs DL vs AI — What’s the Difference? - 00:13

BONUS #3 Regression Types - 00:12

Why Machine Learning is the Future - 06:37

Important notes, tips & tricks for this course - 02:01

This PDF resource will help you a lot! - 01:04

Updates on Udemy Reviews - 01:09

GET ALL THE CODES AND DATASETS HERE! - 01:07

Presentation of the ML A-Z folder, Colaboratory, Jupyter Notebook and Spyder - 16:48

Installing R and R Studio (Mac, Linux & Windows) - 05:40

BONUS: Meet your instructors - 00:28

Some Additional Resources - 00:10

FAQBot! - 01:29

Your Shortcut To Becoming A Better Data Scientist! - 02:05

 

-------------------- Part 1: Data Preprocessing --------------------

Welcome to Part 1 - Data Preprocessing - 00:21

 

Data Preprocessing in Python | 01:32:52

Make sure you have your Machine Learning A-Z folder ready - 00:15

Getting Started - 10:50

Importing the Libraries - 03:34

Importing the Dataset - 15:42

For Python learners, summary of Object-oriented programming: classes & objects - 01:00

Taking care of Missing Data - 12:15

Encoding Categorical Data - 14:58

Splitting the dataset into the Training set and Test set - 13:47

Feature Scaling - 20:31

 

Data Preprocessing in R | 43:15

Welcome - 00:24

Getting Started - 01:35

Make sure you have your dataset ready - 00:08

Dataset Description - 01:57

Importing the Dataset - 02:44

Taking care of Missing Data - 06:22

Encoding Categorical Data - 06:02

Splitting the dataset into the Training set and Test set - 09:34

Feature Scaling - 09:14

Data Preprocessing Template - 05:15

 

   -------------------- Part 2: Regression --------------------

Welcome to Part 2 - Regression - 00:22

 

Simple Linear Regression | 01:18:10

Simple Linear Regression Intuition - Step 1 - 05:45

Simple Linear Regression Intuition - Step 2 - 03:09

Make sure you have your Machine Learning A-Z folder ready - 00:20

Simple Linear Regression in Python - Step 1 - 12:48

Simple Linear Regression in Python - Step 2 - 07:56

Simple Linear Regression in Python - Step 3 - 04:35

Simple Linear Regression in Python - Step 4 - 12:56

Simple Linear Regression in Python - BONUS - 00:30

Simple Linear Regression in R - Step 1 - 04:40

Simple Linear Regression in R - Step 2 - 05:58

Simple Linear Regression in R - Step 3 - 03:38

Simple Linear Regression in R - Step 4 - 15:55

Simple Linear Regression - 5 questions

 

Multiple Linear Regression | 02:14:18

Dataset + Business Problem Description - 03:44

Multiple Linear Regression Intuition - Step 1 - 01:02

Multiple Linear Regression Intuition - Step 2 - 01:00

Multiple Linear Regression Intuition - Step 3 - 07:21

Multiple Linear Regression Intuition - Step 4 - 02:10

Understanding the P-Value - 11:44

Multiple Linear Regression Intuition - Step 5 - 15:41

Make sure you have your Machine Learning A-Z folder ready - 00:20

Multiple Linear Regression in Python - Step 1 - 08:30

Multiple Linear Regression in Python - Step 2 - 09:11

Multiple Linear Regression in Python - Step 3 - 10:37

Multiple Linear Regression in Python - Step 4 - 12:31

Multiple Linear Regression in Python - Backward Elimination - 01:35

Multiple Linear Regression in Python - BONUS - 00:31

Multiple Linear Regression in R - Step 1 - 07:50

Multiple Linear Regression in R - Step 2 - 10:25

Multiple Linear Regression in R - Step 3 - 04:26

Multiple Linear Regression in R - Backward Elimination - HOMEWORK ! - 17:51

Multiple Linear Regression in R - Backward Elimination - Homework Solution - 07:33

Multiple Linear Regression in R - Automatic Backward Elimination - 00:15

Multiple Linear Regression - 5 questions

 

Polynomial Regression | 01:52:19

Polynomial Regression Intuition - 05:08

Make sure you have your Machine Learning A-Z folder ready - 00:20

Polynomial Regression in Python - Step 1 - 13:30

Polynomial Regression in Python - Step 2 - 11:40

Polynomial Regression in Python - Step 3 - 12:54

Polynomial Regression in Python - Step 4 - 08:10

Polynomial Regression in R - Step 1 - 09:12

Polynomial Regression in R - Step 2 - 09:58

Polynomial Regression in R - Step 3 - 19:54

Polynomial Regression in R - Step 4 - 09:35

R Regression Template - 11:58

 

Support Vector Regression (SVR) | 01:18:43

SVR Intuition (Updated!) - 08:09

Heads-up on non-linear SVR - 03:57

Make sure you have your Machine Learning A-Z folder ready - 00:20

SVR in Python - Step 1 - 09:15

SVR in Python - Step 2 - 15:10

SVR in Python - Step 3 - 06:27

SVR in Python - Step 4 - 08:01

SVR in Python - Step 5 - 15:40

SVR in R - 11:44

 

Decision Tree Regression | 58:04

Decision Tree Regression Intuition - 11:06

Make sure you have your Machine Learning A-Z folder ready - 00:20

Decision Tree Regression in Python - Step 1 - 08:38

Decision Tree Regression in Python - Step 2 - 05:00

Decision Tree Regression in Python - Step 3 - 03:16

Decision Tree Regression in Python - Step 4 - 09:50

Decision Tree Regression in R - 19:54

 

Random Forest Regression | 38:09

Random Forest Regression Intuition - 06:44

Make sure you have your Machine Learning A-Z folder ready - 00:20

Random Forest Regression in Python - 13:23

Random Forest Regression in R - 17:42

 

Evaluating Regression Models Performance | 15:07

R-Squared Intuition - 05:11

Adjusted R-Squared Intuition - 09:56

 

Regression Model Selection in Python | 30:03

Make sure you have this Model Selection folder ready - 00:31

Preparation of the Regression Code Templates - 19:26

THE ULTIMATE DEMO OF THE POWERFUL REGRESSION CODE TEMPLATES IN ACTION! - 09:03

Conclusion of Part 2 - Regression - 01:03

 

Regression Model Selection in R | 19:13

Evaluating Regression Models Performance - Homework's Final Part - 08:54

Interpreting Linear Regression Coefficients - 09:16

Conclusion of Part 2 - Regression - 01:03

 

-------------------- Part 3: Classification --------------------

Welcome to Part 3 - Classification - 00:21

 

Logistic Regression | 02:09:51

Logistic Regression Intuition - 17:06

Make sure you have your Machine Learning A-Z folder ready - 00:20

Logistic Regression in Python - Step 1 - 09:43

Logistic Regression in Python - Step 2 - 13:38

Logistic Regression in Python - Step 3 - 07:40

Logistic Regression in Python - Step 4 - 07:49

Logistic Regression in Python - Step 5 - 06:15

Logistic Regression in Python - Step 6 - 09:26

Logistic Regression in Python - Step 7 - 16:06

Logistic Regression in R - Step 1 - 05:58

Logistic Regression in R - Step 2 - 02:58

Logistic Regression in R - Step 3 - 05:23

Logistic Regression in R - Step 4 - 02:48

Warning - Update - 00:27

Logistic Regression in R - Step 5 - 19:24

R Classification Template - 04:16

Machine Learning Regression and Classification BONUS - 00:17

Logistic Regression - 5 questions

BONUS: Logistic Regression Practical Case Study - 00:16

 

K-Nearest Neighbors (K-NN) | 40:56

K-Nearest Neighbor Intuition - 04:52

Make sure you have your Machine Learning A-Z folder ready - 00:20

K-NN in Python - 19:58

K-NN in R - 15:46

 

Support Vector Machine (SVM) | 37:10

K-Nearest Neighbor - 5 questions

SVM Intuition - 09:49

Make sure you have your Machine Learning A-Z folder ready - 00:20

SVM in Python - 14:52

SVM in R - 12:09

 

Kernel SVM | 01:08:06

Kernel SVM Intuition - 03:17

Mapping to a higher dimension - 07:50

The Kernel Trick - 12:20

Types of Kernel Functions - 03:47

Non-Linear Kernel SVR (Advanced) - 10:55

Make sure you have your Machine Learning A-Z folder ready - 00:20

Kernel SVM in Python - 13:03

Kernel SVM in R - 16:34

 

Naive Bayes | 01:19:45

Bayes Theorem - 20:25

Naive Bayes Intuition - 14:03

Naive Bayes Intuition (Challenge Reveal) - 06:04

Naive Bayes Intuition (Extras) - 09:41

Make sure you have your Machine Learning A-Z folder ready - 00:20

Naive Bayes in Python - 14:19

Naive Bayes in R - 14:53

 

Decision Tree Classification | 42:18

Decision Tree Classification Intuition - 08:08

Make sure you have your Machine Learning A-Z folder ready - 00:20

Decision Tree Classification in Python - 14:03

Decision Tree Classification in R - 19:47

 

Random Forest Classification | 38:12

Random Forest Classification Intuition - 04:28

Make sure you have your Machine Learning A-Z folder ready - 00:20

Random Forest Classification in Python - 13:28

Random Forest Classification in R - 19:56

 

Classification Model Selection in Python | 21:31

Make sure you have this Model Selection folder ready - 00:31

THE ULTIMATE DEMO OF THE POWERFUL CLASSIFICATION CODE TEMPLATES IN ACTION! - 21:00

 

Evaluating Classification Models Performance | 34:50

False Positives & False Negatives - 07:57

Confusion Matrix - 04:57

Accuracy Paradox - 02:12

CAP Curve - 11:16

CAP Curve Analysis - 06:19

Conclusion of Part 3 - Classification - 02:09

 

-------------------- Part 4: Clustering --------------------

Welcome to Part 4 - Clustering - 00:21

 

K-Means Clustering | 01:48:21

K-Means Clustering Intuition - 14:17

K-Means Random Initialization Trap - 07:48

K-Means Selecting The Number Of Clusters - 11:51

Make sure you have your Machine Learning A-Z folder ready - 00:20

K-Means Clustering in Python - Step 1 - 08:25

K-Means Clustering in Python - Step 2 - 10:36

K-Means Clustering in Python - Step 3 - 16:58

K-Means Clustering in Python - Step 4 - 06:44

K-Means Clustering in Python - Step 5 - 19:35

K-Means Clustering in R - 11:47

 

Hierarchical Clustering | 01:23:39

K-Means Clustering - 5 questions

Hierarchical Clustering Intuition - 08:47

Hierarchical Clustering How Dendrograms Work - 08:47

Hierarchical Clustering Using Dendrograms - 11:21

Make sure you have your Machine Learning A-Z folder ready - 00:20

Hierarchical Clustering in Python - Step 1 - 06:56

Hierarchical Clustering in Python - Step 2 - 17:12

Hierarchical Clustering in Python - Step 3 - 12:19

Hierarchical Clustering in R - Step 1 - 03:45

Hierarchical Clustering in R - Step 2 - 05:23

Hierarchical Clustering in R - Step 3 - 03:18

Hierarchical Clustering in R - Step 4 - 02:45

Hierarchical Clustering in R - Step 5 - 02:33

Hierarchical Clustering - 5 questions

Conclusion of Part 4 - Clustering - 00:12

 

-------------------- Part 5: Association Rule Learning --------------------

Welcome to Part 5 - Association Rule Learning - 00:11

 

Apriori | 02:10:29

Apriori Intuition - 18:13

Make sure you have your Machine Learning A-Z folder ready - 00:20

Apriori in Python - Step 1 - 08:46

Apriori in Python - Step 2 - 17:07

Apriori in Python - Step 3 - 12:48

Apriori in Python - Step 4 - 19:41

Apriori in R - Step 1 - 19:53

Apriori in R - Step 2 - 14:24

Apriori in R - Step 3 - 19:17

 

Eclat | 28:34

Eclat Intuition - 06:05

Make sure you have your Machine Learning A-Z folder ready - 00:20

Eclat in Python - 12:00

Eclat in R - 10:09

 

-------------------- Part 6: Reinforcement Learning --------------------

Welcome to Part 6 - Reinforcement Learning - 00:35

 

Upper Confidence Bound (UCB) | 02:22:44

The Multi-Armed Bandit Problem - 15:36

Upper Confidence Bound (UCB) Intuition - 14:53

Make sure you have your Machine Learning A-Z folder ready - 00:20

Upper Confidence Bound in Python - Step 1 - 12:42

Upper Confidence Bound in Python - Step 2 - 03:51

Upper Confidence Bound in Python - Step 3 - 07:16

Upper Confidence Bound in Python - Step 4 - 15:45

Upper Confidence Bound in Python - Step 5 - 06:12

Upper Confidence Bound in Python - Step 6 - 07:28

Upper Confidence Bound in Python - Step 7 - 08:09

Upper Confidence Bound in R - Step 1 - 13:39

Upper Confidence Bound in R - Step 2 - 15:58

Upper Confidence Bound in R - Step 3 - 17:37

Upper Confidence Bound in R - Step 4 - 03:18

 

Thompson Sampling | 01:30:35

Thompson Sampling Intuition - 19:12

Algorithm Comparison: UCB vs Thompson Sampling - 08:12

Make sure you have your Machine Learning A-Z folder ready - 00:20

Thompson Sampling in Python - Step 1 - 05:47

Thompson Sampling in Python - Step 2 - 12:19

Thompson Sampling in Python - Step 3 - 14:03

Thompson Sampling in Python - Step 4 - 07:45

Additional Resource for this Section - 00:28

Thompson Sampling in R - Step 1 - 19:01

Thompson Sampling in R - Step 2 - 03:27

 

-------------------- Part 7: Natural Language Processing --------------------

Welcome to Part 7 - Natural Language Processing - 01:05

NLP Intuition - 03:02

Types of Natural Language Processing - 04:11

Classical vs Deep Learning Models - 11:22

Bag-Of-Words Model - 17:05

Make sure you have your Machine Learning A-Z folder ready - 00:20

Natural Language Processing in Python - Step 1 - 07:13

Natural Language Processing in Python - Step 2 - 06:45

Natural Language Processing in Python - Step 3 - 12:54

Natural Language Processing in Python - Step 4 - 11:00

Natural Language Processing in Python - Step 5 - 17:24

Natural Language Processing in Python - Step 6 - 09:52

Natural Language Processing in Python - BONUS - 00:23

Homework Challenge - 00:43

Natural Language Processing in R - Step 1 - 16:35

Natural Language Processing in R - Step 2 - 08:39

Natural Language Processing in R - Step 3 - 06:27

Natural Language Processing in R - Step 4 - 02:57

Natural Language Processing in R - Step 5 - 02:05

Natural Language Processing in R - Step 6 - 05:49

Natural Language Processing in R - Step 7 - 03:26

Natural Language Processing in R - Step 8 - 05:20

Natural Language Processing in R - Step 9 - 12:50

Natural Language Processing in R - Step 10 - 17:31

Homework Challenge - 00:47

BONUS: NLP BERT - 00:23

 

-------------------- Part 8: Deep Learning --------------------

Welcome to Part 8 - Deep Learning - 00:23

What is Deep Learning? - 12:34

 

Artificial Neural Networks | 03:26:06

Plan of attack - 02:51

The Neuron - 16:24

The Activation Function - 08:29

How do Neural Networks work? - 12:47

How do Neural Networks learn? - 12:58

Gradient Descent - 10:12

Stochastic Gradient Descent - 08:44

Backpropagation - 05:21

Business Problem Description - 04:59

Make sure you have your Machine Learning A-Z folder ready - 00:20

ANN in Python - Step 1 - 10:21

Check out our free course on ANN for Regression - 00:11

ANN in Python - Step 2 - 18:36

ANN in Python - Step 3 - 14:28

ANN in Python - Step 4 - 11:58

ANN in Python - Step 5 - 16:25

ANN in R - Step 1 - 17:17

ANN in R - Step 2 - 06:30

ANN in R - Step 3 - 12:29

ANN in R - Step 4 (Last step) - 14:07

Deep Learning BONUS #1 - 00:24

BONUS: ANN Case Study - 00:14

 

Convolutional Neural Networks | 03:14:41

Plan of attack - 03:31

What are convolutional neural networks? - 15:49

Step 1 - Convolution Operation - 16:38

Step 1(b) - ReLU Layer - 06:41

Step 2 - Pooling - 14:13

Step 3 - Flattening - 01:52

Step 4 - Full Connection - 19:24

Summary - 04:19

Softmax & Cross-Entropy - 18:20

Make sure you have your dataset ready - 00:21

CNN in Python - Step 1 - 11:35

CNN in Python - Step 2 - 17:46

CNN in Python - Step 3 - 17:56

CNN in Python - Step 4 - 07:21

CNN in Python - Step 5 - 14:55

CNN in Python - FINAL DEMO! - 23:38

Deep Learning BONUS #2 - 00:21

 

-------------------- Part 9: Dimensionality Reduction --------------------

Welcome to Part 9 - Dimensionality Reduction - 00:33

 

Principal Component Analysis (PCA) | 01:03:43

Principal Component Analysis (PCA) Intuition - 03:49

Make sure you have your Machine Learning A-Z folder ready - 00:20

PCA in Python - Step 1 - 16:52

PCA in Python - Step 2 - 05:30

PCA in R - Step 1 - 12:08

PCA in R - Step 2 - 11:22

PCA in R - Step 3 - 13:42

 

Linear Discriminant Analysis (LDA) | 39:01

Linear Discriminant Analysis (LDA) Intuition - 03:50

Make sure you have your Machine Learning A-Z folder ready - 00:20

LDA in Python - 14:52

LDA in R - 19:59

 

Kernel PCA | 31:53

Make sure you have your Machine Learning A-Z folder ready - 00:20

Kernel PCA in Python - 11:03

Kernel PCA in R - 20:30

 

-------------------- Part 10: Model Selection & Boosting --------------------

Welcome to Part 10 - Model Selection & Boosting - 00:29

 

Model Selection | 01:13:39

Make sure you have your Machine Learning A-Z folder ready - 00:20

k-Fold Cross Validation in Python - 17:55

Grid Search in Python - 21:56

k-Fold Cross Validation in R - 19:29

Grid Search in R - 13:59

 

XGBoost | 36:34

Make sure you have your Machine Learning A-Z folder ready - 00:20

XGBoost in Python - 14:48

Model Selection and Boosting BONUS - 00:32

XGBoost in R - 18:14

THANK YOU bonus video - 02:40

 

Bonus Lectures | 01:47

YOUR SPECIAL BONUS - 01:47

VIP Members
Exclusive downloads for VIP members

Unlimited access for just $7.5/month (billed annually).

دسترسی لینک ها برای کاربران خارج از کشور امکان پذیر نیست! در صورت فعال بودن پروکسی آن را غیر فعال کنید.

سلام لطفا این دوره رو بزارید:
https://www.udemy.com/course/python-for-data-science-and-machine-learning-bootcamp/

سلام خسته نباشید
این مجموعه را دانلود کردم اما فایل های مربوط به زیرنویس با فرمت .vvt است و هنگام پخش ویدیوها با نرم افزار pot player بعضی از زیرنویس ها را نشان می دهد و تعداد زیادی هم نشان نمی دهد
لطفا راهنمایی کنید

می شود آموزش هایی را که همراه با زیرنویس انگلیسی هستند، مشخص کنید؟

www.esetupdate.ir
فهرست نرم افزارهای مرتبط
مشاهده بقیه
هشتگ های مرتبط
سرور آپدیت نود 32
پیشنهاد سافت گذر
Microsoft Exchange Server 2010 SP1 x64 + SP2

Microsoft Exchange Server 2010 SP1 x64 + SP2

نسخه 2010 قویترین نرم افزار مدیریت میل سرور(ویرایش 64 بیتی) یکپارچه شده با سرویس پک 1

Intuit QuickBooks Enterprise Solutions 2024 24.0 R15

Intuit QuickBooks Enterprise Solutions 2024 24.0 R15

حسابداری و مدیریت امور مالی

JP Software Take Command 35.00.21

JP Software Take Command 35.00.21

مدیریت خط فرمان ویندوز

سخنرانی حاج آقا مومنی به مناسبت عید غدیرخم

سخنرانی حاج آقا مومنی به مناسبت عید غدیرخم

سخنرانی مومنی

آموزش نرم افزار Civil 3D

آموزش نرم افزار Civil 3D

سیویل 3D

Uninstall Tool 3.8.0.5730 / GeekUninstaller 1.5.2.165

Uninstall Tool 3.8.0.5730 / GeekUninstaller 1.5.2.165

آن اینستال تول گیگ آن اینستالر

GnarBike Trials Pro 1.3.7 for Android

GnarBike Trials Pro 1.3.7 for Android

بازی موتور سوار تریل

TinyKeep

TinyKeep

فرار از سیاه‌چال

آموزش Xara 3D

آموزش Xara 3D

آشنایی با برنامه Xara 3D

یادگیری جدول در وردپرس

یادگیری جدول در وردپرس

ایجاد جدول با ویرایشگر وردپرس

مداحی وفات حضرت ام البنین (س)

مداحی وفات حضرت ام البنین (س)

مداحی ام البنین

RAM Manager Pro 8.7.3 for Android +3.0

RAM Manager Pro 8.7.3 for Android +3.0

مدیریت رم

UCam Ultra Camera Pro 6.1.7.012417 for Android +2.2

UCam Ultra Camera Pro 6.1.7.012417 for Android +2.2

برنامه فیلمبرداری یو کم

چگونه موضوع پژوهش انتخاب کنیم؟

چگونه موضوع پژوهش انتخاب کنیم؟

روش های تحقیق

Forrest Gump

Forrest Gump

فارست گامپ دوبله فارسی

Hike messenger 6.3.40 for Android +4.0

Hike messenger 6.3.40 for Android +4.0

مسنجر هایک

X Launcher Pro 3.4.3 For Android +4.1

X Launcher Pro 3.4.3 For Android +4.1

ایکس لانچر

MailDroid Pro 4.92 for Android +3.0

MailDroid Pro 4.92 for Android +3.0

مدیریت ایمیل

PDF Architect Pro+OCR 9.1.74.23030

PDF Architect Pro+OCR 9.1.74.23030

ویرایش و تبدیل فایل‌های پی‌دی‌اف

Mozilla Firefox 143.0 Win/Mac/Linux + Farsi

Mozilla Firefox 143.0 Win/Mac/Linux + Farsi

فایرفاکس مرورگر اینترنتی

Corel PaintShop Pro 2023 Ultimate 25.2.0.58 + Creative Collection / 2022

Corel PaintShop Pro 2023 Ultimate 25.2.0.58 + Creative Collection / 2022

کورل ویرایش حرفه‌ای تصاویر

Lynda - Android 4.1 SDK Jelly Bean New Features

Lynda - Android 4.1 SDK Jelly Bean New Features

مجموع فیلمهای آموزشی شرکت لیندا در مورد روش تولید نرم افزارهای اندروید 4.1

تلاوت معروف استاد شحات محمد انور سوره مبارکه حمد

تلاوت معروف استاد شحات محمد انور سوره مبارکه حمد

تلاوت تصویری شحات انور سوره حمد

آموزش نرم افزار اتوکد 2012

آموزش نرم افزار اتوکد 2012

آشنایی با نرم افزار AutoCAD 2012

Real Widget 1.0.8 for Android +4.0

Real Widget 1.0.8 for Android +4.0

ویجت با شمایل ویندوز فون 7

مولودی های زیبا از حاج حسین سیب سرخی

مولودی های زیبا از حاج حسین سیب سرخی

مولودی 9 ربیع الاول

تلاوت مجلسی استاد محمد صدیق المنشاوی سوره مبارکه نصر

تلاوت مجلسی استاد محمد صدیق المنشاوی سوره مبارکه نصر

تلاوت محمد صدیق المنشاوی سوره نصر

تلاوت مجلسی استاد شحات محمد انور سوره مبارکه اخلاص

تلاوت مجلسی استاد شحات محمد انور سوره مبارکه اخلاص

تلاوت شحات محمد انور سوره اخلاص

Clash of Clans 16.386.14 for Android

Clash of Clans 16.386.14 for Android

کلش آف کلنز

ایمان، معیار وحدت از زبان آیت الله مصباح یزدی

ایمان، معیار وحدت از زبان آیت الله مصباح یزدی

ایمان، معیار وحدت از زبان آیت الله مصباح یزدی

Crashed Lander v2.5

Crashed Lander v2.5

کاوش‌گر سقوط کرده

Skype 8.150.0.125 Win/Mac/Linux + Portable

Skype 8.150.0.125 Win/Mac/Linux + Portable

اسکایپ

AnyBurn Pro 6.5

AnyBurn Pro 6.5

رایت سی‌دی و دی‌وی‌دی

Darksiders II + Updates 1-4

Darksiders II + Updates 1-4

سواران تاریکی 2

مکیال المکارم فی فوائد الدعاء للقائم

مکیال المکارم فی فوائد الدعاء للقائم

عقیده مهدویت و موضوع امام زمان (عج)

ESET NOD32 / Smart Security / Endpoint Offline Update 31502 (2025.07.10) for v3.x v4.x v5.x v6.x v7.x v8.x

ESET NOD32 / Smart Security / Endpoint Offline Update 31502 (2025.07.10) for v3.x v4.x v5.x v6.x v7.x v8.x

آپدیت آفلاین نود 32

Agatha Christie - The ABC Murders

Agatha Christie - The ABC Murders

پوآرو

Enotria The Last Song

Enotria The Last Song

اکشن و نقش‌آفرینی برای کامپیوتر

MATLAB (مطلب)

MATLAB (مطلب)

آموزش مطلب

Samurai Jack: Battle Through Time

Samurai Jack: Battle Through Time

اکشن و ماجراجویی

خبرنامه

با عضویت در خبرنامه، زودتر از همه باخبر باش!