سافت گذر دانشنامه نرم افزار - دانلود رایگان نرم افزار

همه دسته بندی ها

منو
آیکون جستجو در سایت سافت گذر
اطلاعیه های مهم سایت اطلاعیه های مهم سایت

 

💐 میلاد زینت پدر حضرت زینب سلام الله علیها مبارک باد 💐
 
 
  1. جهت رفع مشکل باز شدن سایت به دلیل بلاک توسط  نود 32 این ویدیو یا این ویدیو(ورژن 9 به بالا) یا راهنمای تصویری را مشاهده کنید
  2. اکانت های بروزرسانی نود32 با قیمت های مناسب به صورت یک ، سه ، شش و دوازده ماهه از اینجا قابل خرید می باشد.

نرم افزار های پرکاربرد

ثبت نام | ورود
Udemy - Machine Learning A-Z™ Hands-On Python & R In Data Science

دانلود Udemy - Machine Learning A-Z™ Hands-On Python & R In Data Science - دانلود آموزش یادگیری ماشین با زبان‌های برنامه‌نویسی پایتون و آر

دانلود دورهٔ آموزش ویدئویی یادگیری ماشین براساس زبان‌های برنامه‌نویسی پایتون و R در علم داده‌ها

توضیحات بیشتر

دانـلـود کـنـیـد

سرور آپدیت نود 32
دانلود Udemy - Machine Learning A-Z™ Hands-On Python & R In Data Science مشاهده تصاویر بیشتر ...
مشاهده تصاویر بیشتر ...
تعداد مشاهده

45366مشاهده |

1408رأی |

امتیاز :2.8

مدت زمان:

44:29:00

زبان / قیمت(تومان):

رایگان برای اعضای ویژه انگلیسی / رایگان برای اعضای ویژه

فرمت / حجم فایل:

10/2 GB / mp4

آخرین بروزرسانی:

دسته بندی:

| در پلیر موجود در این صفحه، می‌توانید ویدئوی مقدمه و آشنایی با آموزش‌های این دوره را با زیرنویس انگلیسی به‌صورت آنلاین تماشا کنید |

Udemy - Machine Learning A-Z™: Hands-On Python & R In Data Science

Last Updated: 2022/2

 

توجه داشته باشید که این دورهٔ آموزشی ارائه‌شده یکی از برترین، پُرامتیازترین، پُرفروش‌ترین و تأثیرگذارترین دوره‌های کمپانی معتبر Udemy با موضوع «یادگیری ماشین با استفاده از زبان برنامه‌نویسی پایتون و R در علم داده‌ها» و سایر مهارت‌های مربوطه است در سایت Udemy تنها با پرداخت مبلغ بسیار زیادی قابل خریداری خواهد بود.

با استفاده از این دورهٔ آموزشی ویدئویی می‌توانید از صفر تا صدِ مهارت‌ها و تکنیک‌های مربوط به یادگیری ماشین براساس زبان‌های برنامه‌نویسی پایتون و R در علم داده‌ها را با جدیدترین متدها فرا بگیرید. سطح این دورهٴ آموزشی تصویری، از مقدماتی (در حد صفر) به‌سوی سطح پیشرفته است؛ یعنی شما برای استفاده از این دوره، به هیچ‌گونه دانش و مهارت قبلی در هیچ‌کدام از زمینه‌های مربوطه نیازی ندارید.

فایل‌های زیرنویس انگلیسی این دورهٔ آموزشی نیز به‌طور کامل به همراه هر ویدئو ارائه شده‌اند و نیازی به دانلود جداگانهٔ آنها نیست.

 

– تولیدکننده: کمپانی معتبر Udemy

مدرس/تیم آموزش‌دهنده: Kirill Eremenko, Hadelin de Ponteves, Ligency I Team, SuperDataScience Support, Ligency Team

– تاریخ آخرین آپدیت دوره: ۲۰۲۲/۲ (جدیدترین آپدیت/آپدیت نهایی)

– سطح: از مقدماتی تا پبشرفته

– مدت زمان آموزش: ۴۴ ساعت و ۲۹ دقیقه

– زبان آموزش: انگلیسی

– زیرنویس انگلیسی: دارد

– فرمت فایل‌های ویدئویی: MP4

– کیفیت ویدئوها: HD 720p

 

فهرست سرفصل‌ها و عناوین آموزشی به همراه زمان دقیق آنها (سرفصل‌ها و عناوین اصلی این دوره، بدون بروزرسانی):

Course Content

I 45 Sections | 320 Lectures | 44h 29m Total Length
_____________________________________________

Welcome to the course! | 43:20

Applications of Machine Learning - 03:22

BONUS: Learning Paths - 00:51

BONUS #2 ML vs DL vs AI — What’s the Difference? - 00:13

BONUS #3 Regression Types - 00:12

Why Machine Learning is the Future - 06:37

Important notes, tips & tricks for this course - 02:01

This PDF resource will help you a lot! - 01:04

Updates on Udemy Reviews - 01:09

GET ALL THE CODES AND DATASETS HERE! - 01:07

Presentation of the ML A-Z folder, Colaboratory, Jupyter Notebook and Spyder - 16:48

Installing R and R Studio (Mac, Linux & Windows) - 05:40

BONUS: Meet your instructors - 00:28

Some Additional Resources - 00:10

FAQBot! - 01:29

Your Shortcut To Becoming A Better Data Scientist! - 02:05

 

-------------------- Part 1: Data Preprocessing --------------------

Welcome to Part 1 - Data Preprocessing - 00:21

 

Data Preprocessing in Python | 01:32:52

Make sure you have your Machine Learning A-Z folder ready - 00:15

Getting Started - 10:50

Importing the Libraries - 03:34

Importing the Dataset - 15:42

For Python learners, summary of Object-oriented programming: classes & objects - 01:00

Taking care of Missing Data - 12:15

Encoding Categorical Data - 14:58

Splitting the dataset into the Training set and Test set - 13:47

Feature Scaling - 20:31

 

Data Preprocessing in R | 43:15

Welcome - 00:24

Getting Started - 01:35

Make sure you have your dataset ready - 00:08

Dataset Description - 01:57

Importing the Dataset - 02:44

Taking care of Missing Data - 06:22

Encoding Categorical Data - 06:02

Splitting the dataset into the Training set and Test set - 09:34

Feature Scaling - 09:14

Data Preprocessing Template - 05:15

 

   -------------------- Part 2: Regression --------------------

Welcome to Part 2 - Regression - 00:22

 

Simple Linear Regression | 01:18:10

Simple Linear Regression Intuition - Step 1 - 05:45

Simple Linear Regression Intuition - Step 2 - 03:09

Make sure you have your Machine Learning A-Z folder ready - 00:20

Simple Linear Regression in Python - Step 1 - 12:48

Simple Linear Regression in Python - Step 2 - 07:56

Simple Linear Regression in Python - Step 3 - 04:35

Simple Linear Regression in Python - Step 4 - 12:56

Simple Linear Regression in Python - BONUS - 00:30

Simple Linear Regression in R - Step 1 - 04:40

Simple Linear Regression in R - Step 2 - 05:58

Simple Linear Regression in R - Step 3 - 03:38

Simple Linear Regression in R - Step 4 - 15:55

Simple Linear Regression - 5 questions

 

Multiple Linear Regression | 02:14:18

Dataset + Business Problem Description - 03:44

Multiple Linear Regression Intuition - Step 1 - 01:02

Multiple Linear Regression Intuition - Step 2 - 01:00

Multiple Linear Regression Intuition - Step 3 - 07:21

Multiple Linear Regression Intuition - Step 4 - 02:10

Understanding the P-Value - 11:44

Multiple Linear Regression Intuition - Step 5 - 15:41

Make sure you have your Machine Learning A-Z folder ready - 00:20

Multiple Linear Regression in Python - Step 1 - 08:30

Multiple Linear Regression in Python - Step 2 - 09:11

Multiple Linear Regression in Python - Step 3 - 10:37

Multiple Linear Regression in Python - Step 4 - 12:31

Multiple Linear Regression in Python - Backward Elimination - 01:35

Multiple Linear Regression in Python - BONUS - 00:31

Multiple Linear Regression in R - Step 1 - 07:50

Multiple Linear Regression in R - Step 2 - 10:25

Multiple Linear Regression in R - Step 3 - 04:26

Multiple Linear Regression in R - Backward Elimination - HOMEWORK ! - 17:51

Multiple Linear Regression in R - Backward Elimination - Homework Solution - 07:33

Multiple Linear Regression in R - Automatic Backward Elimination - 00:15

Multiple Linear Regression - 5 questions

 

Polynomial Regression | 01:52:19

Polynomial Regression Intuition - 05:08

Make sure you have your Machine Learning A-Z folder ready - 00:20

Polynomial Regression in Python - Step 1 - 13:30

Polynomial Regression in Python - Step 2 - 11:40

Polynomial Regression in Python - Step 3 - 12:54

Polynomial Regression in Python - Step 4 - 08:10

Polynomial Regression in R - Step 1 - 09:12

Polynomial Regression in R - Step 2 - 09:58

Polynomial Regression in R - Step 3 - 19:54

Polynomial Regression in R - Step 4 - 09:35

R Regression Template - 11:58

 

Support Vector Regression (SVR) | 01:18:43

SVR Intuition (Updated!) - 08:09

Heads-up on non-linear SVR - 03:57

Make sure you have your Machine Learning A-Z folder ready - 00:20

SVR in Python - Step 1 - 09:15

SVR in Python - Step 2 - 15:10

SVR in Python - Step 3 - 06:27

SVR in Python - Step 4 - 08:01

SVR in Python - Step 5 - 15:40

SVR in R - 11:44

 

Decision Tree Regression | 58:04

Decision Tree Regression Intuition - 11:06

Make sure you have your Machine Learning A-Z folder ready - 00:20

Decision Tree Regression in Python - Step 1 - 08:38

Decision Tree Regression in Python - Step 2 - 05:00

Decision Tree Regression in Python - Step 3 - 03:16

Decision Tree Regression in Python - Step 4 - 09:50

Decision Tree Regression in R - 19:54

 

Random Forest Regression | 38:09

Random Forest Regression Intuition - 06:44

Make sure you have your Machine Learning A-Z folder ready - 00:20

Random Forest Regression in Python - 13:23

Random Forest Regression in R - 17:42

 

Evaluating Regression Models Performance | 15:07

R-Squared Intuition - 05:11

Adjusted R-Squared Intuition - 09:56

 

Regression Model Selection in Python | 30:03

Make sure you have this Model Selection folder ready - 00:31

Preparation of the Regression Code Templates - 19:26

THE ULTIMATE DEMO OF THE POWERFUL REGRESSION CODE TEMPLATES IN ACTION! - 09:03

Conclusion of Part 2 - Regression - 01:03

 

Regression Model Selection in R | 19:13

Evaluating Regression Models Performance - Homework's Final Part - 08:54

Interpreting Linear Regression Coefficients - 09:16

Conclusion of Part 2 - Regression - 01:03

 

-------------------- Part 3: Classification --------------------

Welcome to Part 3 - Classification - 00:21

 

Logistic Regression | 02:09:51

Logistic Regression Intuition - 17:06

Make sure you have your Machine Learning A-Z folder ready - 00:20

Logistic Regression in Python - Step 1 - 09:43

Logistic Regression in Python - Step 2 - 13:38

Logistic Regression in Python - Step 3 - 07:40

Logistic Regression in Python - Step 4 - 07:49

Logistic Regression in Python - Step 5 - 06:15

Logistic Regression in Python - Step 6 - 09:26

Logistic Regression in Python - Step 7 - 16:06

Logistic Regression in R - Step 1 - 05:58

Logistic Regression in R - Step 2 - 02:58

Logistic Regression in R - Step 3 - 05:23

Logistic Regression in R - Step 4 - 02:48

Warning - Update - 00:27

Logistic Regression in R - Step 5 - 19:24

R Classification Template - 04:16

Machine Learning Regression and Classification BONUS - 00:17

Logistic Regression - 5 questions

BONUS: Logistic Regression Practical Case Study - 00:16

 

K-Nearest Neighbors (K-NN) | 40:56

K-Nearest Neighbor Intuition - 04:52

Make sure you have your Machine Learning A-Z folder ready - 00:20

K-NN in Python - 19:58

K-NN in R - 15:46

 

Support Vector Machine (SVM) | 37:10

K-Nearest Neighbor - 5 questions

SVM Intuition - 09:49

Make sure you have your Machine Learning A-Z folder ready - 00:20

SVM in Python - 14:52

SVM in R - 12:09

 

Kernel SVM | 01:08:06

Kernel SVM Intuition - 03:17

Mapping to a higher dimension - 07:50

The Kernel Trick - 12:20

Types of Kernel Functions - 03:47

Non-Linear Kernel SVR (Advanced) - 10:55

Make sure you have your Machine Learning A-Z folder ready - 00:20

Kernel SVM in Python - 13:03

Kernel SVM in R - 16:34

 

Naive Bayes | 01:19:45

Bayes Theorem - 20:25

Naive Bayes Intuition - 14:03

Naive Bayes Intuition (Challenge Reveal) - 06:04

Naive Bayes Intuition (Extras) - 09:41

Make sure you have your Machine Learning A-Z folder ready - 00:20

Naive Bayes in Python - 14:19

Naive Bayes in R - 14:53

 

Decision Tree Classification | 42:18

Decision Tree Classification Intuition - 08:08

Make sure you have your Machine Learning A-Z folder ready - 00:20

Decision Tree Classification in Python - 14:03

Decision Tree Classification in R - 19:47

 

Random Forest Classification | 38:12

Random Forest Classification Intuition - 04:28

Make sure you have your Machine Learning A-Z folder ready - 00:20

Random Forest Classification in Python - 13:28

Random Forest Classification in R - 19:56

 

Classification Model Selection in Python | 21:31

Make sure you have this Model Selection folder ready - 00:31

THE ULTIMATE DEMO OF THE POWERFUL CLASSIFICATION CODE TEMPLATES IN ACTION! - 21:00

 

Evaluating Classification Models Performance | 34:50

False Positives & False Negatives - 07:57

Confusion Matrix - 04:57

Accuracy Paradox - 02:12

CAP Curve - 11:16

CAP Curve Analysis - 06:19

Conclusion of Part 3 - Classification - 02:09

 

-------------------- Part 4: Clustering --------------------

Welcome to Part 4 - Clustering - 00:21

 

K-Means Clustering | 01:48:21

K-Means Clustering Intuition - 14:17

K-Means Random Initialization Trap - 07:48

K-Means Selecting The Number Of Clusters - 11:51

Make sure you have your Machine Learning A-Z folder ready - 00:20

K-Means Clustering in Python - Step 1 - 08:25

K-Means Clustering in Python - Step 2 - 10:36

K-Means Clustering in Python - Step 3 - 16:58

K-Means Clustering in Python - Step 4 - 06:44

K-Means Clustering in Python - Step 5 - 19:35

K-Means Clustering in R - 11:47

 

Hierarchical Clustering | 01:23:39

K-Means Clustering - 5 questions

Hierarchical Clustering Intuition - 08:47

Hierarchical Clustering How Dendrograms Work - 08:47

Hierarchical Clustering Using Dendrograms - 11:21

Make sure you have your Machine Learning A-Z folder ready - 00:20

Hierarchical Clustering in Python - Step 1 - 06:56

Hierarchical Clustering in Python - Step 2 - 17:12

Hierarchical Clustering in Python - Step 3 - 12:19

Hierarchical Clustering in R - Step 1 - 03:45

Hierarchical Clustering in R - Step 2 - 05:23

Hierarchical Clustering in R - Step 3 - 03:18

Hierarchical Clustering in R - Step 4 - 02:45

Hierarchical Clustering in R - Step 5 - 02:33

Hierarchical Clustering - 5 questions

Conclusion of Part 4 - Clustering - 00:12

 

-------------------- Part 5: Association Rule Learning --------------------

Welcome to Part 5 - Association Rule Learning - 00:11

 

Apriori | 02:10:29

Apriori Intuition - 18:13

Make sure you have your Machine Learning A-Z folder ready - 00:20

Apriori in Python - Step 1 - 08:46

Apriori in Python - Step 2 - 17:07

Apriori in Python - Step 3 - 12:48

Apriori in Python - Step 4 - 19:41

Apriori in R - Step 1 - 19:53

Apriori in R - Step 2 - 14:24

Apriori in R - Step 3 - 19:17

 

Eclat | 28:34

Eclat Intuition - 06:05

Make sure you have your Machine Learning A-Z folder ready - 00:20

Eclat in Python - 12:00

Eclat in R - 10:09

 

-------------------- Part 6: Reinforcement Learning --------------------

Welcome to Part 6 - Reinforcement Learning - 00:35

 

Upper Confidence Bound (UCB) | 02:22:44

The Multi-Armed Bandit Problem - 15:36

Upper Confidence Bound (UCB) Intuition - 14:53

Make sure you have your Machine Learning A-Z folder ready - 00:20

Upper Confidence Bound in Python - Step 1 - 12:42

Upper Confidence Bound in Python - Step 2 - 03:51

Upper Confidence Bound in Python - Step 3 - 07:16

Upper Confidence Bound in Python - Step 4 - 15:45

Upper Confidence Bound in Python - Step 5 - 06:12

Upper Confidence Bound in Python - Step 6 - 07:28

Upper Confidence Bound in Python - Step 7 - 08:09

Upper Confidence Bound in R - Step 1 - 13:39

Upper Confidence Bound in R - Step 2 - 15:58

Upper Confidence Bound in R - Step 3 - 17:37

Upper Confidence Bound in R - Step 4 - 03:18

 

Thompson Sampling | 01:30:35

Thompson Sampling Intuition - 19:12

Algorithm Comparison: UCB vs Thompson Sampling - 08:12

Make sure you have your Machine Learning A-Z folder ready - 00:20

Thompson Sampling in Python - Step 1 - 05:47

Thompson Sampling in Python - Step 2 - 12:19

Thompson Sampling in Python - Step 3 - 14:03

Thompson Sampling in Python - Step 4 - 07:45

Additional Resource for this Section - 00:28

Thompson Sampling in R - Step 1 - 19:01

Thompson Sampling in R - Step 2 - 03:27

 

-------------------- Part 7: Natural Language Processing --------------------

Welcome to Part 7 - Natural Language Processing - 01:05

NLP Intuition - 03:02

Types of Natural Language Processing - 04:11

Classical vs Deep Learning Models - 11:22

Bag-Of-Words Model - 17:05

Make sure you have your Machine Learning A-Z folder ready - 00:20

Natural Language Processing in Python - Step 1 - 07:13

Natural Language Processing in Python - Step 2 - 06:45

Natural Language Processing in Python - Step 3 - 12:54

Natural Language Processing in Python - Step 4 - 11:00

Natural Language Processing in Python - Step 5 - 17:24

Natural Language Processing in Python - Step 6 - 09:52

Natural Language Processing in Python - BONUS - 00:23

Homework Challenge - 00:43

Natural Language Processing in R - Step 1 - 16:35

Natural Language Processing in R - Step 2 - 08:39

Natural Language Processing in R - Step 3 - 06:27

Natural Language Processing in R - Step 4 - 02:57

Natural Language Processing in R - Step 5 - 02:05

Natural Language Processing in R - Step 6 - 05:49

Natural Language Processing in R - Step 7 - 03:26

Natural Language Processing in R - Step 8 - 05:20

Natural Language Processing in R - Step 9 - 12:50

Natural Language Processing in R - Step 10 - 17:31

Homework Challenge - 00:47

BONUS: NLP BERT - 00:23

 

-------------------- Part 8: Deep Learning --------------------

Welcome to Part 8 - Deep Learning - 00:23

What is Deep Learning? - 12:34

 

Artificial Neural Networks | 03:26:06

Plan of attack - 02:51

The Neuron - 16:24

The Activation Function - 08:29

How do Neural Networks work? - 12:47

How do Neural Networks learn? - 12:58

Gradient Descent - 10:12

Stochastic Gradient Descent - 08:44

Backpropagation - 05:21

Business Problem Description - 04:59

Make sure you have your Machine Learning A-Z folder ready - 00:20

ANN in Python - Step 1 - 10:21

Check out our free course on ANN for Regression - 00:11

ANN in Python - Step 2 - 18:36

ANN in Python - Step 3 - 14:28

ANN in Python - Step 4 - 11:58

ANN in Python - Step 5 - 16:25

ANN in R - Step 1 - 17:17

ANN in R - Step 2 - 06:30

ANN in R - Step 3 - 12:29

ANN in R - Step 4 (Last step) - 14:07

Deep Learning BONUS #1 - 00:24

BONUS: ANN Case Study - 00:14

 

Convolutional Neural Networks | 03:14:41

Plan of attack - 03:31

What are convolutional neural networks? - 15:49

Step 1 - Convolution Operation - 16:38

Step 1(b) - ReLU Layer - 06:41

Step 2 - Pooling - 14:13

Step 3 - Flattening - 01:52

Step 4 - Full Connection - 19:24

Summary - 04:19

Softmax & Cross-Entropy - 18:20

Make sure you have your dataset ready - 00:21

CNN in Python - Step 1 - 11:35

CNN in Python - Step 2 - 17:46

CNN in Python - Step 3 - 17:56

CNN in Python - Step 4 - 07:21

CNN in Python - Step 5 - 14:55

CNN in Python - FINAL DEMO! - 23:38

Deep Learning BONUS #2 - 00:21

 

-------------------- Part 9: Dimensionality Reduction --------------------

Welcome to Part 9 - Dimensionality Reduction - 00:33

 

Principal Component Analysis (PCA) | 01:03:43

Principal Component Analysis (PCA) Intuition - 03:49

Make sure you have your Machine Learning A-Z folder ready - 00:20

PCA in Python - Step 1 - 16:52

PCA in Python - Step 2 - 05:30

PCA in R - Step 1 - 12:08

PCA in R - Step 2 - 11:22

PCA in R - Step 3 - 13:42

 

Linear Discriminant Analysis (LDA) | 39:01

Linear Discriminant Analysis (LDA) Intuition - 03:50

Make sure you have your Machine Learning A-Z folder ready - 00:20

LDA in Python - 14:52

LDA in R - 19:59

 

Kernel PCA | 31:53

Make sure you have your Machine Learning A-Z folder ready - 00:20

Kernel PCA in Python - 11:03

Kernel PCA in R - 20:30

 

-------------------- Part 10: Model Selection & Boosting --------------------

Welcome to Part 10 - Model Selection & Boosting - 00:29

 

Model Selection | 01:13:39

Make sure you have your Machine Learning A-Z folder ready - 00:20

k-Fold Cross Validation in Python - 17:55

Grid Search in Python - 21:56

k-Fold Cross Validation in R - 19:29

Grid Search in R - 13:59

 

XGBoost | 36:34

Make sure you have your Machine Learning A-Z folder ready - 00:20

XGBoost in Python - 14:48

Model Selection and Boosting BONUS - 00:32

XGBoost in R - 18:14

THANK YOU bonus video - 02:40

 

Bonus Lectures | 01:47

YOUR SPECIAL BONUS - 01:47

نکته امنیتی بعد از نصب نرم‌افزار

برای محافظت از سیستم خود در برابر تهدیدات امنیتی، استفاده از آنتی‌ویروس معتبر ضروری است.

نصب آنتی ویروس
VIP Members
Exclusive downloads for VIP members

Unlimited access for just $7.5/month (billed annually).

دسترسی لینک ها برای کاربران خارج از کشور امکان پذیر نیست! در صورت فعال بودن پروکسی آن را غیر فعال کنید.

سلام لطفا این دوره رو بزارید:
https://www.udemy.com/course/python-for-data-science-and-machine-learning-bootcamp/

سلام خسته نباشید
این مجموعه را دانلود کردم اما فایل های مربوط به زیرنویس با فرمت .vvt است و هنگام پخش ویدیوها با نرم افزار pot player بعضی از زیرنویس ها را نشان می دهد و تعداد زیادی هم نشان نمی دهد
لطفا راهنمایی کنید

می شود آموزش هایی را که همراه با زیرنویس انگلیسی هستند، مشخص کنید؟

فهرست نرم افزارهای مرتبط
مشاهده بقیه
هشتگ های مرتبط
حمایت مالی

حمایت از سافت گذر ❤️

تاکنون 0 نفر از ما حمایت کرده‌اند
امروز 0

با حمایت شما، هزاران کاربر دیگر هم از خدمات رایگان ما استفاده می‌کنند.
تیم سافت گذر از حمایت شما سپاسگزار است 🙏

حامی سافت گذر می‌شوم
سرور آپدیت نود 32
پیشنهاد سافت گذر
ThinkFree Mobile Pro6.5.140429 for Android +4.0

ThinkFree Mobile Pro6.5.140429 for Android +4.0

نمایش، ویرایش فایلهای آفیس و PDF

Liong The Lost Amulets

Liong The Lost Amulets

پازل چینی

Udemy - Fundamentals of Filmmaking and Videography

Udemy - Fundamentals of Filmmaking and Videography

آموزش فیلم سازی

Children of Men

Children of Men

فرزندان بشر

سلفی گری وهابی: چالشی در اندیشه های بنیادین و ریشه های تاریخی

سلفی گری وهابی: چالشی در اندیشه های بنیادین و ریشه های تاریخی

چالشی در اندیشه های بنیادین و ریشه های تاریخی

YouCam Makeup Premium 6.38.1 For Android +6.0

YouCam Makeup Premium 6.38.1 For Android +6.0

یو کم میکاپ

American Truck Simulator - Missouri + Update v1.54.2.18

American Truck Simulator - Missouri + Update v1.54.2.18

شبیه ساز کامیون

Drag Racing: Club Wars 2.0.47 for Android +2.3

Drag Racing: Club Wars 2.0.47 for Android +2.3

مسابقات سرعت

The Admin

The Admin

اکشن تیراندازی

Rainbow Mosaics - Christmas Lights

Rainbow Mosaics - Christmas Lights

موزاییک‌های رنگین کمان - چراغ‌های کریسمس

آشنایی با لینوکس فدورا

آشنایی با لینوکس فدورا

کاربرد Linux Fedora در شبکه های کامپیوتری

آموزش طراحی و ترجمه قالب بلاگفا

آموزش طراحی و ترجمه قالب بلاگفا

آشنایی کاربردی با طراحی و ترجمه قالب های بلاگفا

Adobe Connect Client 2024.4.729 + Enterprise 11.0.0

Adobe Connect Client 2024.4.729 + Enterprise 11.0.0

وب کنفرانس و کلاس اینترنتی ادوب کانکت

علم نحو و قواعد مربوط به آن

علم نحو و قواعد مربوط به آن

ادبیات عرب

The story picks up with the Clayton family, Tarzan, Jane Porter and their son Korak

The story picks up with the Clayton family, Tarzan, Jane Porter and their son Korak

تارزان و شیر طلایی

تمرکز کلید موفقیت

تمرکز کلید موفقیت

چگونه ذهن خود را متمرکز کنید‎

PhotoScape X Pro 4.2.8

PhotoScape X Pro 4.2.8

ویرایش عکس

Pluralsight - Design Patterns in Java- Creational

Pluralsight - Design Patterns in Java- Creational

فیلم آموزش الگوهای طراحی Creational در جاوا

گلچین سخنرانی های آیت الله محمد تقی بهجت

گلچین سخنرانی های آیت الله محمد تقی بهجت

سخنرانی آیت الله بهجت درباره مقام مومن

MediaInfo 25.10 / macOS

MediaInfo 25.10 / macOS

مشاهده اطلاعات فایل صوتی و ویدئویی

سخنرانی حجت الاسلام حسینی قمی سال 98

سخنرانی حجت الاسلام حسینی قمی سال 98

محرم حجت الاسلام حسینی قمی

Post Master

Post Master

شبیه‌ساز پُست و نامه‌رسانی

آلبوم کامل موسیقی سریال بازی تاج و تخت فصل 4 - با دو کیفیت 128kbps + 320kbps

آلبوم کامل موسیقی سریال بازی تاج و تخت فصل 4 - با دو کیفیت 128kbps + 320kbps

آهنگ سریال بازی تاج و تخت

GoldenDict 1.0.1 + Portable with Farsi English Arabic German Russian Swedish Glossary

GoldenDict 1.0.1 + Portable with Farsi English Arabic German Russian Swedish Glossary

فرهنگ لغت قدرتمند و چند زبانه با بهترین فرهنگ‌های فارسی - عربی - انگلیسی - آلمانی - روسی - سوئدی و...

تاریخ زندگانی ائمه اطهار(ع)

تاریخ زندگانی ائمه اطهار(ع)

ارشاد شیخ مفید

سخنرانی حجت الاسلام مهدی شریعتی‌تبار با موضوع دوگونه از نقش‌آفرینی امام سجاد (ع)

سخنرانی حجت الاسلام مهدی شریعتی‌تبار با موضوع دوگونه از نقش‌آفرینی امام سجاد (ع)

سخنرانی ایراد خطبه و بیان دعا با شریعتی‌تبار

Ape Out

Ape Out

اکشن

Mega Man 11

Mega Man 11

مگامن

Just Shapes & Beats

Just Shapes & Beats

اکشن

سخنرانی حجت الاسلام رفیعی درباره شیوه های تربیت امام علی (ع)

سخنرانی حجت الاسلام رفیعی درباره شیوه های تربیت امام علی (ع)

شیوه تربیت امام علی از زبان دکتر رفیعی

آموزش تصویری نرم افزار Offline Explorer Enterprise

آموزش تصویری نرم افزار Offline Explorer Enterprise

آموزش آفلاین اکسپلورر

Udemy - Cell Phone Repair - iPhone 3GS

Udemy - Cell Phone Repair - iPhone 3GS

تعمیرات تلفن همراه - گوشی آیفون 3GS

Office 2010 Pro Plus SP2 14.0.7268.5000 April 2021

Office 2010 Pro Plus SP2 14.0.7268.5000 April 2021

آفیس 2010 سرویس پک 2

iSpring Suite 11.11.9 Build 27008

iSpring Suite 11.11.9 Build 27008

نرم افزار ساخت آموزش های الکترونیکی مجازی

RealTimes 5.7.5 / RealPlayer Cloud 2.8.65 for Android 4.0

RealTimes 5.7.5 / RealPlayer Cloud 2.8.65 for Android 4.0

پخش کننده رییل پلیر

دورهٔ آموزش ویدئویی نود.جی‌اس (Node.js) به زبان فارسی

دورهٔ آموزش ویدئویی نود.جی‌اس (Node.js) به زبان فارسی

آموزش نود جی اس

PanoramaStudio Pro 4.1.6.445

PanoramaStudio Pro 4.1.6.445

ساخت عکس پانوراما

ترتیل کل قرآن کریم از استاد عباس امام جمعه

ترتیل کل قرآن کریم از استاد عباس امام جمعه

ترتیل سوره های قرآن استاد امام جمعه

Garfield Kart - Furious Racing + Update

Garfield Kart - Furious Racing + Update

ماشین سواری گارفیلد

سخنرانی حجت الاسلام رضا استادی با موضوع دلایل امامت امام علی (علیه السلام) بعد از غدیر

سخنرانی حجت الاسلام رضا استادی با موضوع دلایل امامت امام علی (علیه السلام) بعد از غدیر

سخنرانی دلایل امامت امام علی (علیه السلام) بعد از غدیر با رضا استادی

خبرنامه

با عضویت در خبرنامه، زودتر از همه باخبر باش!